TACTIC: A new detector for nuclear astrophysics

Alison Laird

THE UNIVERSITY of York
Experimental Nuclear Astrophysics at low energies

- Studying directly key nuclear reactions for nucleosynthesis and energy generation in explosive sites - novae, supernovae and X-ray bursters

- Experimental conditions
 - Beam energies: about 0.1 – 2 MeV/u (up to few 10^9 K)
 - Charged particle energies of few MeV down to ~ 100 keV
 - Radioactive beams - high background, low intensity
 - Cross sections can be low - << mbarn

- Need high efficiency, large solid angle detector arrays with low detection threshold
TRIUMF Annular Chamber for Tracking and Identification of Charged particles

MOTIVATION: study the $^8\text{Li}(\alpha,n)^{11}\text{B}$ reaction

Recent (rapid neutron capture) r-process network calculations of core collapse supernovae have included light nuclei and shown that for particular models, two nuclear reaction chains

\[
\alpha(\alpha n,\gamma)^9\text{Be}(n,\gamma)^{10}\text{Be}(\alpha,\gamma)^{14}\text{C} \quad \text{and} \\
\alpha(t,\gamma)^7\text{Li}(n,\gamma)^8\text{Li}(\alpha,n)^{11}\text{B}
\]

can significantly affect the final abundances of certain heavy nuclei

Much experimental effort has gone into studying this reaction……….
Last 8Li($\alpha,n)^{11}$B measurement
by means of a Multiple Sampling and Tracking Proportional Chamber (MSTPC)

Figure 1. Schematic illustration of the detector system.

+ Helium as target gas and counter gas
+ Threedimensional tracking plus energy loss
- 8Li beam directly into the chamber
- Beam stopped in chamber
- Low beam intensity
- Broad energy spectrum of the beam
Each anode strip provides energy loss and timing information:
- Total energy
- Trajectory
- Particle i.d.

48 channel Flash ADC
VME board

48 x amp
Current status

• Fabrication of prototype complete
• Assembly of outer casing and internal support structures complete
• Assembly of cathode complete
• Assembly of anode and GEM – today!

• Source testing in York – May to June 2007
• Ship to TRIUMF – July 2007
• Install TACTIC on TUDA beamline – July 2007
 (construction and installation of stand and GHS ongoing at TRIUMF)
• Initial stable beam tests – 29th August to 3rd September
• Stable (α,n) tests late 2007
• First radioactive beam experiment spring 2008
Summary

• Detection of low energy charged particles for direct measurements of astrophysically interesting reactions with large solid angle coverage
• Measure dE/dx, E and timing to reconstruct track and identify particle
• Target and detector gas can be same or separate as determined by experimental constraints
• Intrinsically radiation hard
• Surrounded by gamma array (BGO?)
• Install in DRAGON windowless gas target?

Design versatile enough to optimise configuration for other studies:

- 12C+12C low energy fusion
- 18Ne(α,p)21Na
- Other (α,n) and (α,p)?

Future opportunities for TACTIC in Europe? If interested, please contact me!
Many thanks to G. Ruprecht for most of these slides!

S.P. Fox, B. R. Fulton, A.M. Laird, P. Mumby-Croft
University of York

P. Amaudruz, L. Buchmann, M. Pavan,
J. Pearson, G. Ruprecht, P. Walden
TRIUMF